
VIRUS BULLETIN www.virusbtn.com

99999MAMAMAMAMAY 2004Y 2004Y 2004Y 2004Y 2004

CHIBA WITTY BLUESCHIBA WITTY BLUESCHIBA WITTY BLUESCHIBA WITTY BLUESCHIBA WITTY BLUES
Peter Ferrie, Frédéric Perriot, Péter Ször
Symantec, USA

W32/Witty is a UDP-based worm employing a vulnerability
in ISS security products, such as the BlackICE firewall, to
spread. More specifically, Witty uses a stack buffer overflow
in the code that parses ICQ v5 packets.

Witty is very similar to last year’s W32/Slammer (see VB,
March 2003, p.6) in a number of ways: it is short (only 647
bytes for the attack buffer, excluding the variable UDP
payload padding), its sending rate is limited only by
available bandwidth, and it selects random target IP
addresses. Unlike Slammer, however, Witty features a very
destructive payload: it overwrites random portions of the
hard drives of machines it infects.

THE PARSING EXPEDITIONTHE PARSING EXPEDITIONTHE PARSING EXPEDITIONTHE PARSING EXPEDITIONTHE PARSING EXPEDITION

The vulnerability used by Witty, discovered by eEye, was
published on 18 March 2004 (PST). The worm appeared
late on 19 March 2004 (PST). This is perhaps the shortest
timespan we have experienced between the public
announcement of a buffer overflow vulnerability and the
spread of the corresponding worm. One day leaves little
time for countermeasures to be deployed, especially since
this vulnerability was announced on a Friday!

The bug in ISS’s software is in the Protocol Analysis
Module (PAM) and is related to the parsing of ICQ v5
datagrams supposed to originate from ICQ servers. The
PAM module is located in a DLL called iss_pam1.dll (for
the BlackICE product). The module takes a UDP source
port of 4000 as an indication that an incoming datagram is
an ICQ server answer (it does so regardless of the
destination port – this assumption is necessary, given the
connectionless nature of the UDP protocol). Then the
module parses the packet according to the ICQ protocol. If
an ICQ v5 SRV_MULTI compound message is received,
containing an SRV_USER_ONLINE packet followed by a
specially crafted SRV_META_USER packet, it may result
in a stack buffer being overwritten. Witty sends just such a
message, overflowing an email address field, and hijacking
a return address in a typical stack-smashing attack.

The SRV_USER_ONLINE and SRV_META_USER
packets are obviously anomalous. In fact, they are not valid
messages according to the ICQ v5 protocol. Instead, their
fields are tuned to force a specific code path to be taken in
the PAM module. The SRV_USER_ONLINE portion of the
datagram contributes in setting up the parameters required
for the PAM module to parse the malformed

SRV_META_USER portion. The packet sizes are the exact
minimum required. Most fields are zeroed out, but the
spoofed user IP address is set to one in order to bypass a
check for a non-zero value. To be able to produce such an
optimised exploit in such a short time, it looks like the
author enjoyed an uncanny knowledge of the inner
workings of the vulnerable code.

MONA LISA OVERFLOWMONA LISA OVERFLOWMONA LISA OVERFLOWMONA LISA OVERFLOWMONA LISA OVERFLOW

The overlong email address submitted by Witty (which
gives the virus its name – it starts with an ASCII string that
includes ‘insert witty message here’) is copied into a
512-byte stack buffer through an sprintf() call. After
sprintf() returns, the function whose stack frame holds the
overflowed buffer attempts to return to its caller. Since the
return address is overwritten, the control flow is hijacked.
Instead of returning, the function jumps to a ‘jmp esp’
instruction located at a constant offset in iss_pam1.dll. The
‘jmp esp’ instruction in turn transfers control to the top of
the stack, which contains a backwards jump pointing to the
beginning of the worm body.

The first step in the execution of the worm body is to
initialize register ‘edi’ to point to the beginning of the UDP
packet payload. This register is later used when sending
copies of the worm to new machines. Rather than rebuilding
the attack buffer from scratch, Witty locates the original
copy of its attack buffer on the heap. It does so by following
a saved pointer on the stack frame of the procedure calling
the vulnerable ICQ parsing routine. The obtained location is
a pointer to the IP packet payload, so the worm then skips
the UDP header by adding 8 to register ‘edi’.

Witty then alters the stack pointer to avoid clobbering its
own code by pushing data on the stack.

KUANG EXPERKUANG EXPERKUANG EXPERKUANG EXPERKUANG EXPERT TYPE 11HT TYPE 11HT TYPE 11HT TYPE 11HT TYPE 11H

The worm functionality is fairly simple: it creates a UDP
socket and binds it to port 4000, and starts sending copies of
itself to random IP addresses, on random destination ports.
Periodically, after every infection cycle (consisting of
20,000 attacks) it runs its destructive payload. Witty relies
on the Import Address Table entries of iss_pam1.dll to call
the kernel32 APIs it needs. It resolves the Winsock APIs
dynamically.

The randomization is carried out by a Pseudo-Random
Number Generator (PRNG) similar to the Linear
Congruential Generator in Slammer (it uses the same
multiplier and delta.) The PRNG is seeded with the value
returned by GetTickCount() on the beginning of each
infection cycle. As a result of a single PRNG being used to

VIRUS ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

1010101010 MAMAMAMAMAY 2004Y 2004Y 2004Y 2004Y 2004

randomize the target IP, destination port, and size of the
UDP payload, these three parameters are correlated: 90 per
cent of the IP address space will be attacked in a single way.
To a given IP address in this space, the worm always sends a
payload of a constant size to a constant destination port.
This is independent of the attacking machine. The other 10
per cent of the IP address space may be attacked in two
different ways (and no more than two). For instance, the IP
address 209.134.161.35 may receive worm datagrams with
the following characteristics:

209.134.161.35 attack type 1: 882 bytes to port 23280/udp
209.134.161.35 attack type 2: 1030 bytes to port 13615/udp

Occasionally, the PRNG of Witty will generate some IP
addresses finishing in ‘.255’. Since the eEye advisory
mentions explicitly that the vulnerability is exploitable by
broadcasting malformed packets, it is legitimate to wonder
whether the worm takes advantage of such a mass-
propagation. Fortunately, the use of a socket to broadcast
datagrams requires a specific option to be set, and the worm
author did not take this step.

After every infection cycle, Witty attempts to overwrite a
random 64k area of one of the first eight hard disks with the
beginning of the memory image of iss_pam1.dll.

PAPAPAPAPATTERN RECOGNITIONTTERN RECOGNITIONTTERN RECOGNITIONTTERN RECOGNITIONTTERN RECOGNITION
We believe that the variable destination port and UDP
payload size used by Witty were designed by the author to
evade IDS products. A consequence of the variable payload
size is that additional padding is sent following the worm
body. The padding just happens to be the content of heap
memory after the IP payload of the worm packet, and as
such it is variable. Thus the worm packets will not only
have variable size, but also variable checksums in the
general case. In addition, as we mentioned above, the target
IP, destination port, and payload size are correlated, which
may lead to confusion when looking at the worm traffic
from a single IP (one may think that the UDP payload is a
constant size).

All in all, Witty had some interesting characteristics that
probably allowed it to fly under a number of IDS radars.
It is likely that the author of the worm was familiar with
IDS systems.

BURNING CHROMEBURNING CHROMEBURNING CHROMEBURNING CHROMEBURNING CHROME
There have been several vulnerabilities discovered recently
in security software, from bugs in OpenSSL (exploited by
the Linux/Slapper worm) to ones in Microsoft’s ISA Server
and there are surely more to come. Since security software
layers are naturally at the front line of defence,

vulnerabilities in them are hard to mitigate. Vulnerable
security software may lull the user into a false sense of
security: disabling network services and closing ports does
not prevent the parsing of incoming data destined for these
services. This is particularly striking in the case of Witty:
most clients do not have any ICQ v5 client installed because
the current ICQ protocol version is 8, and version 5 has
been obsolete for years!

COUNT ZEROCOUNT ZEROCOUNT ZEROCOUNT ZEROCOUNT ZERO

According to the CAIDA analysis of the spread of the Witty
worm (http://www.caida.org/analysis/security/witty/), the
early propagation of the worm does not match the expected
rate of a natural infection. The pool of infected machines
appearing in the first moments of the epidemic is too high to
be explained by regular network scanning and exploitation.
Instead, the CAIDA analysts propose that the population of
the worm was seeded, by the worm’s author injecting the
worm code manually into a few pre-scanned vulnerable
machines. We agree.

Rather than inferring this from epidemiological data, our
evidence relies on the observation of a side-effect of the
worm propagation method: when Witty sends itself to a
target machine, it randomizes the size of the datagram it
sends. The size of the datagram is between 768 bytes and
1279 bytes, therefore the datagram systematically includes a
portion of unused data following the 647 meaningful bytes
of the worm. Had the worm originated from a single
instance, all of its replicants would share the same tail
(between bytes 648 and 767). Such is not the case: firewall
logs show that at least two different tails exist (there may be
more such tails, the seeding population could be determined
by counting them).

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

Insert witty conclusion here. [sic]

W32/Witty

Aliases: W32.Witty.Worm, W32/Witty.worm,
WORM_WITTY.A, Worm.Win32.Witty.

Size: Variable, between 768 and 1279 bytes
for the UDP payload.

Type: Internet worm.

Exploits: buffer overflow in ICQ parsing routine
of the ISS PAM module
CAN-2004-0362.

